SCI

8 October 2024

Data-driven risk stratification and precision management of pulmonary nodules detected on chest computed tomography

(Nature Medicine, IF: 58.7)

  • Chengdi Wang, Jun Shao, Yichu He, Jiaojiao Wu, Xingting Liu, Liuqing Yang, Ying Wei, Xiang Sean Zhou, Yiqiang Zhan, Feng Shi, Dinggang Shen & Weimin Li

  • CORRESPONDENCE TO: chengdi_wang@scu.edu.cn; feng.shi@uii-ai.com; Dinggang.Shen@gmail.com; weimi003@scu.edu.cn

The widespread implementation of low-dose computed tomography (LDCT) in lung cancer screening has led to the increasing detection of pulmonary nodules. However, precisely evaluating the malignancy risk of pulmonary nodules remains a formidable challenge. Here we propose a triage-driven Chinese Lung Nodules Reporting and Data System (C-Lung-RADS) utilizing a medical checkup cohort of 45,064 cases. The system was operated in a stepwise fashion, initially distinguishing low-, mid-, high- and extremely high-risk nodules based on their size and density. Subsequently, it progressively integrated imaging information, demographic characteristics and follow-up data to pinpoint suspicious malignant nodules and refine the risk scale. The multidimensional system achieved a state-of-the-art performance with an area under the curve (AUC) of 0.918 (95% confidence interval (CI) 0.918–0.919) on the internal testing dataset, outperforming the single-dimensional approach (AUC of 0.881, 95% CI 0.880–0.882). Moreover, C-Lung-RADS exhibited a superior sensitivity compared with Lung-RADS v2022 (87.1% versus 63.3%) in an independent cohort, which was screened using mobile computed tomography scanners to broaden screening accessibility in resource-constrained settings. With its foundation in precise risk stratification and tailored management, this system has minimized unnecessary invasive procedures for low-risk cases and recommended prompt intervention for extremely high-risk nodules to avert diagnostic delays. This approach has the potential to enhance the decision-making paradigm and facilitate a more efficient diagnosis of lung cancer during routine checkups as well as screening scenarios.

低剂量计算机断层扫描(LDCT)在癌症筛查中的广泛应用导致了肺结节检测的增加。然而,精确评估肺结节的恶性风险仍然是一项艰巨的挑战。在这里,我们提出了一个分诊驱动的中国肺结节报告和数据系统(C-Lung-RADS),该系统利用了45064例患者的体检队列。该系统以逐级回归的方式运行,最初根据结节的大小和密度区分低、中、高和极高危结节。随后,它逐步整合影像学信息、人口统计学特征和随访数据,以查明可疑的恶性结节并完善风险量表。多维系统实现了最先进的性能,内部测试数据集的曲线下面积(AUC)为0.918(95%置信区间(CI)为0.918-0.919),优于单维方法(AUC为0.881,95%CI为0.880-0.882)。此外,在一个独立队列中,与Lung RADS v2022相比,C-Lung-RADS表现出更高的敏感性(87.1%对63.3%),该队列使用移动计算机断层扫描进行筛查,以扩大资源受限环境中的筛查可及性。该系统以精确的风险分层和量身定制的管理为基础,最大限度地减少了低风险病例不必要的侵入性手术,并建议对极高危结节进行及时干预,以避免诊断延误。这种方法有可能增强现有疾病诊疗决策模式,并在常规检查和筛查场景中促进对癌症的更有效诊断。


AI全文解析
这篇文章的核心在于提出了一个数据驱动的系统(C-Lung-RADS)用于评估在低剂量计算机断层扫描(LDCT)中检测到的肺结节的恶性风险。以下是文章的几个关键点:
1. 背景和挑战:由于LDCT广泛用于肺癌筛查,肺结节的检测数量大幅增加。然而,准确评估这些结节的恶性风险仍然具有挑战性。传统的评估方法(如Lung-RADS)在准确性和灵敏度方面有局限性,特别是在资源有限的环境中难以适应。
2. C-Lung-RADS系统:该系统基于中国大规模的医疗检查数据,涵盖了45,064例患者。C-Lung-RADS使用多维度的数据,如结节的大小和密度,以及患者的人口统计学信息和随访数据,通过分类来识别出不同风险级别的结节:低、中、高和极高风险  。
3. 性能评估:C-Lung-RADS在内部测试数据集上的AUC达到了0.918,显著优于传统的单一维度方法(AUC为0.881)。此外,在独立的移动CT筛查数据集中,C-Lung-RADS的灵敏度达到87.1%,高于Lung-RADS v2022的63.3%。这意味着C-Lung-RADS能够更精确地区分不同风险级别的结节,从而提高筛查的有效性  。
4. 临床应用和意义:C-Lung-RADS系统的精确分层管理模式减少了对低风险结节进行不必要的侵入性操作的需求,并为高风险结节推荐了及时的干预。这种数据驱动的风险分层策略不仅提升了肺癌筛查的效率,还特别适合在资源有限的环境中通过移动筛查技术进行推广。这种方法有助于优化肺癌的早期诊断和管理流程  。

总体而言,该研究通过C-Lung-RADS系统展示了数据驱动的风险评估如何改善肺结节的管理,提高筛查的准确性和可操作性。


喜欢SCI天天读的理由

陪您一起学习SCI医学论文

每天5分钟,让自己的英语牛逼起来

特殊福利让您惊喜连连


复制链接或点击原文链接,即可下载SCI原文

W234N02

链接:https://pan.baidu.com/s/1cWKMtzmQUfohKD_KHh46iQ?pwd=d8oc

提取码:d8oc