SCI

18 October 2024

Neoantigen immunogenicity landscapes and evolution of tumor ecosystems during immunotherapy with nivolumab

(Nature Medicine, IF: 58.7)

  • Tyler J. Alban, Nadeem Riaz, Prerana Parthasarathy, Vladimir Makarov, Sviatoslav Kendall, Seong-Keun Yoo, Rachna Shah, Nils Weinhold, Raghvendra Srivastava, Xiaoxiao Ma, Chirag Krishna, Juk Yee Mok, Wim J. E. van Esch, Edward Garon, Wallace Akerley, Benjamin Creelan, Nivedita Aanur, Diego Chowell, William J. Geese, Naiyer A. Rizvi & Timothy A. Chan

  • CORRESPONDENCE TO: chant2@CCF.org

Neoantigen immunoediting drives immune checkpoint blockade efficacy, yet the molecular features of neoantigens and how neoantigen immunogenicity shapes treatment response remain poorly understood. To address these questions, 80 patients with non-small cell lung cancer were enrolled in the biomarker cohort of CheckMate 153 (CA209-153), which collected radiographic guided biopsy samples before treatment and during treatment with nivolumab. Early loss of mutations and neoantigens during therapy are both associated with clinical benefit. We examined 1,453 candidate neoantigens, including many of which that had reduced cancer cell fraction after treatment with nivolumab, and identified 196 neopeptides that were recognized by T cells. Mapping these neoantigens to clonal dynamics, evolutionary trajectories and clinical response revealed a strong selection against immunogenic neoantigen-harboring clones. We identified position-specific amino acid and physiochemical features related to immunogenicity and developed an immunogenicity score. Nivolumab-induced microenvironmental evolution in non-small cell lung cancer shared some similarities with melanoma, yet critical differences were apparent. This study provides unprecedented molecular portraits of neoantigen landscapes underlying nivolumab’s mechanism of action.

新抗原免疫编辑驱动免疫检查点阻断疗效,但新抗原的分子特征以及新抗原免疫原性如何塑造治疗反应的机制仍然知之甚少。为了解决这些问题,80名非小细胞肺癌患者被纳入CheckMate 153(CA209-153)的生物标志物队列,该队列在使用纳武利尤单抗治疗前和治疗期间收集了放射学引导的穿刺活检样本。治疗期间突变和新抗原的早期丢失都与临床获益有关。我们检测了1453种候选新抗原,其中许多在应用纳武利尤单抗治疗后降低了癌症细胞部分,并鉴定了196种被T细胞识别的新肽。将这些新抗原映射到克隆动力学、进化轨迹和临床反应中,揭示了对携带免疫原性新抗原的克隆的重要选择。我们确定了与免疫原性相关的位置特异性氨基酸和其理化特征,并制定了免疫原性评分。非小细胞肺癌中纳武利尤单抗诱导的微环境演变与黑色素瘤有一些相似之处,但存在明显的关键差异。这项研究为纳武利尤单抗的作用机制提供了前所未有的新抗原分子图谱。

 

AI全文解析
这篇题为“Neoantigen Immunogenicity Landscapes and Evolution of Tumor Ecosystems During Immunotherapy with Nivolumab”的研究发表在《Nature Medicine》期刊上,旨在探讨使用 nivolumab(纳武单抗)免疫治疗期间肿瘤内新抗原免疫原性及其演变。
研究重点和主要发现
1. 新抗原免疫原性:新抗原是由肿瘤突变引起的蛋白质片段,这些片段能够引发免疫反应。研究通过广泛的基因组分析,识别出在免疫治疗过程中新抗原的特性及其对治疗反应的影响。
2. 免疫治疗的克隆选择:研究观察到 nivolumab 治疗使得携带高免疫原性新抗原的肿瘤克隆更容易受到免疫系统的攻击。随着治疗的进行,这些克隆会被免疫系统选择性去除,反之,低免疫原性的突变则倾向于保留。此现象揭示了新抗原免疫编辑的作用,进一步阐明了免疫治疗中的肿瘤克隆动态。
3. 进化和肿瘤微环境变化:在免疫治疗期间,肿瘤生态系统中的微环境也发生了显著变化,尤其是与 T 细胞的相互作用。通过新抗原与克隆动态之间的映射,研究展示了治疗应答者和非应答者之间的差异,证明了不同的新抗原在免疫应答和肿瘤生存中的不同作用。
4. 临床意义:理解新抗原如何影响 nivolumab 的治疗效果,有助于未来设计更精准的个性化免疫治疗方法。此外,该研究开发了一个新的机器学习模型,用于预测哪些新抗原最可能引发免疫反应,从而辅助治疗选择。
这项研究展示了在 nivolumab 免疫治疗过程中,新抗原如何推动肿瘤克隆的进化,为未来的肿瘤免疫治疗提供了新思路,并揭示了个体化治疗在优化免疫疗效中的潜力。此研究的结果进一步丰富了我们对肿瘤微环境与免疫治疗互动机制的理解。