SCI

4 August 2024

Cellular adaptation to cancer therapy along a resistance continuum

(Nature, if=50.5)

  • França GS, Baron M, King BR, Bossowski JP, Bjornberg A, Pour M, Rao A, Patel AS, Misirlioglu S, Barkley D, Tang KH, Dolgalev I, Liberman DA, Avital G, Kuperwaser F, Chiodin M, Levine DA, Papagiannakopoulos T, Marusyk A, Lionnet T, Yanai I. 

  • Correspondence: itai.yanai@nyulangone.org

Advancements in precision oncology over the past decades have led to new therapeutic interventions, but the efficacy of such treatments is generally limited by an adaptive process that fosters drug resistance1. In addition to genetic mutations2, recent research has identified a role for non-genetic plasticity in transient drug tolerance3 and the acquisition of stable resistance4,5. However, the dynamics of cell-state transitions that occur in the adaptation to cancer therapies remain unknown and require a systems-level longitudinal framework. Here we demonstrate that resistance develops through trajectories of cell-state transitions accompanied by a progressive increase in cell fitness, which we denote as the 'resistance continuum'. This cellular adaptation involves a stepwise assembly of gene expression programmes and epigenetically reinforced cell states underpinned by phenotypic plasticity, adaptation to stress and metabolic reprogramming. Our results support the notion that epithelial-to-mesenchymal transition or stemness programmes-often considered a proxy for phenotypic plasticity-enable adaptation, rather than a full resistance mechanism. Through systematic genetic perturbations, we identify the acquisition of metabolic dependencies, exposing vulnerabilities that can potentially be exploited therapeutically. The concept of the resistance continuum highlights the dynamic nature of cellular adaptation and calls for complementary therapies directed at the mechanisms underlying adaptive cell-state transitions.

过去几十年来,精准肿瘤学的进步带来了新的治疗干预方法,但这些疗法的疗效通常受到产生耐药性的适应过程的限制。除基因突变外,最近的研究还发现了非遗传可塑性在短暂耐药性和获得稳定耐药性中的作用。然而,在适应癌症疗法的过程中发生的细胞状态转变的动态变化仍然未知,需要一个系统级的纵向框架。在这里,我们证明了抗药性是通过细胞状态转变的轨迹发展起来的,同时伴随着细胞适应性的逐步提高,我们将其称为 “抗药性连续体”。这种细胞适应涉及基因表达程序的逐步组合以及表型可塑性、应激适应和代谢重编程支撑下的表观遗传强化细胞状态。我们的研究结果支持这样一种观点,即上皮细胞向间质转化或干性计划--通常被认为是表型可塑性的代表--使适应成为可能,而不是完全的抵抗机制。通过系统的遗传扰动,我们确定了新陈代谢依赖性的获得,暴露了可能被治疗利用的弱点。抗药性连续体的概念强调了细胞适应的动态性质,并呼吁针对适应性细胞状态转换的基本机制采取补充疗法。