SCI
6 October 2024
Single-cell chromatin accessibility reveals malignant regulatory programs in primary human cancers
(Science; if=44.7)
Sundaram L, Kumar A, Zatzman M, Salcedo A, Ravindra N, Shams S, Louie BH, Bagdatli ST, Myers MA, Sarmashghi S, Choi HY, Choi WY, Yost KE, Zhao Y, Granja JM, Hinoue T, Hayes DN, Cherniack A, Felau I, Choudhry H, Zenklusen JC, Farh KK, McPherson A, Curtis C, Laird PW; Cancer Genome Atlas Analysis Network‡; Demchok JA, Yang L, Tarnuzzer R, Caesar-Johnson SJ, Wang Z, Doane AS, Khurana E, Castro MAA, Lazar AJ, Broom BM, Weinstein JN, Akbani R, Kumar SV, Raphael BJ, Wong CK, Stuart JM, Safavi R, Benz CC, Johnson BK, Kyi C, Shen H, Corces MR, Chang HY, Greenleaf WJ.
Correspondence: lakss@stanford.edu
To identify cancer-associated gene regulatory changes, we generated single-cell chromatin accessibility landscapes across eight tumor types as part of The Cancer Genome Atlas. Tumor chromatin accessibility is strongly influenced by copy number alterations that can be used to identify subclones, yet underlying cis-regulatory landscapes retain cancer type-specific features. Using organ-matched healthy tissues, we identified the "nearest healthy" cell types in diverse cancers, demonstrating that the chromatin signature of basal-like-subtype breast cancer is most similar to secretory-type luminal epithelial cells. Neural network models trained to learn regulatory programs in cancer revealed enrichment of model-prioritized somatic noncoding mutations near cancer-associated genes, suggesting that dispersed, nonrecurrent, noncoding mutations in cancer are functional. Overall, these data and interpretable gene regulatory models for cancer and healthy tissue provide a framework for understanding cancer-specific gene regulation.
为了确定癌症相关基因调控变化,我们生成了八种肿瘤类型的单细胞染色质可及性景观,作为癌症基因组图谱的一部分。肿瘤染色质的可及性受到拷贝数改变的强烈影响,拷贝数改变可用于识别亚克隆,但潜在的顺式调节景观保留了癌症类型特异性特征。使用器官匹配的健康组织,我们确定了不同癌症中“最接近健康”的细胞类型,表明癌症基底细胞亚型的染色质特征与分泌型腔上皮细胞最相似。为学习癌症调节程序而训练的神经网络模型显示,在癌症相关基因附近,模型优先的体细胞非编码突变富集,这表明癌症中的分散、非反应、非编码突变是功能性的。总体而言,这些数据和癌症和健康组织的可解释基因调控模型为理解癌症特异性基因调控提供了框架。